RUS  ENG
Full version
JOURNALS // Algebra and Discrete Mathematics // Archive

Algebra Discrete Math., 2007 Issue 1, Pages 86–107 (Mi adm200)

RESEARCH ARTICLE

R-S correspondence for the Hyper-octahedral group of type $B_n$ – A different approach

M. Parvathi, B. Sivakumar, A. Tamilselvi

Ramanujan Institute for Advanced study in mathematics, University of Madras, Chennai–600 005, India

Abstract: In this paper we develop a Robinson Schensted algorithm for the hyperoctahedral group of type $B_n$ on partitions of $(\frac{1}{2}r(r+1)+2n)$ whose $2-$core is $\delta_r$, $r\geq 0$ where $\delta_r$ is the partition with parts $(r,r-1,\dots,0)$. We derive some combinatorial properties associated with this correspondence.

Keywords: Robinson Schensted correspondence, Hyperoctahedral group of type $B_n$, Domino tableau.

MSC: 05E10, 20C30

Received: 23.04.2007
Revised: 25.05.2007

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024