RUS  ENG
Full version
JOURNALS // Algebra and Discrete Mathematics // Archive

Algebra Discrete Math., 2006 Issue 3, Pages 71–91 (Mi adm272)

RESEARCH ARTICLE

On fully wild categories of representations of posets

Stanisław Kasjan

Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Chopina 12/18, 87–100 Toruń, Poland

Abstract: Assume that $I$ is a finite partially ordered set and $k$ is a field. We prove that if the category prin$(kI)$ of prinjective modules over the incidence $k$-algebra $kI$ of $I$ is fully $k$-wild then the category $fpr(I,k)$ of finite dimensional $k$-representations of $I$ is also fully $k$-wild. A key argument is a construction of fully faithful exact endofunctors of the category of finite dimensional $k\langle x,y\rangle$-modules, with the image contained in certain subcategories.

Keywords: representations of posets, wild, fully wild representation type, endofunctors of wild module category.

MSC: 16G60, 16G30, 03C60

Received: 01.06.2005
Revised: 22.11.2006

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024