RUS  ENG
Full version
JOURNALS // Algebra and Discrete Mathematics // Archive

Algebra Discrete Math., 2006 Issue 3, Pages 101–118 (Mi adm274)

RESEARCH ARTICLE

Arithmetic properties of exceptional lattice paths

Wolfgang Rump

Institut for Algebra und Zahlentheorie, Universitat, Stuttgart, Pfaffenwaldring 57, D–70550 Stuttgart, Germany

Abstract: For a fixed real number $\rho>0$, let $L$ be an affine line of slope $\rho^{-1}$ in $\mathbb{R}^2$. We show that the closest approximation of $L$ by a path $P$ in $\mathbb{Z}^2$ is unique, except in one case, up to integral translation. We study this exceptional case. For irrational $\rho$, the projection of $P$ to $L$ yields two quasicrystallographic tilings in the sense of Lunnon and Pleasants [5]. If $\rho$ satisfies an equation $x^2=mx+1$ with $m\in\mathbb{Z}$, both quasicrystals are mapped to each other by a substitution rule. For rational $\rho$, we characterize the periodic parts of $P$ by geometric and arithmetic properties, and exhibit a relationship to the hereditary algebras $H_{\rho}(K)$ over a field $K$ introduced in a recent proof of a conjecture of Roiter.

Keywords: Lattice path, uniform enumeration, quasicrystal.

MSC: 05B30, 11B50; 52C35, 11A07

Received: 20.04.2005
Revised: 19.11.2006

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024