RUS  ENG
Full version
JOURNALS // Algebra and Discrete Mathematics // Archive

Algebra Discrete Math., 2002 Issue 1, Pages 1–18 (Mi adm298)

RESEARCH ARTICLE

Bounds for graphs of given girth and generalized polygons

Lakdere Benkherouf, Vasyl Ustimenko

Department of Mathematics and Statistics, Sultan Qaboos University, P.O.Box 36, Al-Khod 123, Oman

Abstract: In this paper we present a bound for bipartite graphs with average bidegrees $\eta $ and $\xi $ satisfying the inequality $\eta \geq {\xi }^{\alpha }$, $\alpha \geq 1$. This bound turns out to be the sharpest existing bound. Sizes of known families of finite generalized polygons are exactly on that bound. Finally, we present lower bounds for the numbers of points and lines of biregular graphs (tactical configurations) in terms of their bidegrees. We prove that finite generalized polygons have smallest possible order among tactical configuration of given bidegrees and girth. We also present an upper bound on the size of graphs of girth $g\geq 2t+1$. This bound has the same magnitude as that of Erdös bound, which estimates the size of graphs without cycles $C_{2t}$.

Keywords: Extremal Graph Theory, Operations Research, Family of Graphs of High Girth, Simple Groups of Lie Type.

MSC: 90B06, 05C80, 05D409, 05D99, 05E20

Received: 21.10.2002

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024