RUS  ENG
Full version
JOURNALS // Algebra and Discrete Mathematics // Archive

Algebra Discrete Math., 2004 Issue 1, Pages 112–120 (Mi adm331)

This article is cited in 7 papers

RESEARCH ARTICLE

On associative algebras satisfying the identity $x^5=0$

Ivan P. Shestakova, Natalia Zhukavetsb

a Instituto de Matemática e Estatíýstica, Universidade de São Paulo, Brasil and Sobolev Institute of Mathematics, Novosibirsk, Russia
b Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic

Abstract: We study Kuzmin's conjecture on the index of nilpotency for the variety ${\mathcal {N}il}_5$ of associative nil-algebras of degree 5. Due to Vaughan–Lee [11] the problem is reduced to that for $k$-generator ${\mathcal {N}il}_5$-superalgebras, where $k\leq 5$. We confirm Kuzmin's conjecture for 2-generator superalgebras proving that they are nilpotent of degree 15.

Keywords: Nil-algebra, nilpotency degree, superalgebra.

MSC: 16R10; 16N40, 16R30, 16W55

Received: 22.10.2003
Revised: 27.01.2004

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024