RUS  ENG
Full version
JOURNALS // Algebra and Discrete Mathematics // Archive

Algebra Discrete Math., 2010 Volume 9, Issue 2, Pages 127–139 (Mi adm34)

RESEARCH ARTICLE

Biserial minor degenerations of matrix algebras over a field

Anna Włodarska

Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, 87-100 Toruń, Poland

Abstract: Let $n\geq 2$ be a positive integer, $K$ an arbitrary field, and $q=[q^{(1)}|\dots|q^{(n)}]$ an $n$-block matrix of $n\times n$ square matrices $q^{(1)},\dots,q^{(n)}$ with coefficients in $K$ satisfying the conditions (C1) and (C2) listed in the introduction. We study minor degenerations $\mathbb M^q_n(K)$ of the full matrix algebra $\mathbb M_n(K)$ in the sense of Fujita–Saka—Simson [7]. A characterisation of all block matrices $q=[q^{(1)}|\dots|q^{(n)}]$ such that the algebra $\mathbb M^q_n(K)$ is basic and right biserial is given in the paper. We also prove that a basic algebra $\mathbb M^q_n(K)$ is right biserial if and only if $\mathbb M^q_n(K)$ is right special biserial. It is also shown that the $K$-dimensions of the left socle of $\mathbb M^q_n(K)$ and of the right socle of $\mathbb M^q_n(K)$ coincide, in case $\mathbb M^q_n(K)$ is basic and biserial.

Keywords: right special biserial algebra, biserial algebra, Gabriel quiver.

MSC: 16G10, 16G60, 14R20, 16S80

Received: 09.03.2010
Revised: 14.10.2010

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024