RUS  ENG
Full version
JOURNALS // Algebra and Discrete Mathematics // Archive

Algebra Discrete Math., 2003 Issue 2, Pages 47–86 (Mi adm378)

This article is cited in 6 papers

RESEARCH ARTICLE

Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. II

Zh. T. Chernousovaa, M. A. Dokuchaevb, M. A. Khibinac, V. V. Kirichenkoa, S. G. Miroshnichenkoa, V. N. Zhuravleva

a Faculty of Mechanics and Mathematics, Kiev National Taras Shevchenko Univ., Vladimirskaya Str., 64, Kiev, Ukraine
b Departamento de Matematica Univ. de Sao Paulo, Caixa Postal 66281, Sao Paulo, SP,  05315–970 — Brazil
c Glushkov In-t of Cybernetics NAS Ukraine, Glushkov Av., 40, 03680 Kiev, Ukraine

Abstract: The main concept of this part of the paper is that of a reduced exponent matrix and its quiver, which is strongly connected and simply laced. We give the description of quivers of reduced Gorenstein exponent matrices whose number $s$ of vertices is at most 7. For $2\leq s\leq 5$ we have that all adjacency matrices of such quivers are multiples of doubly stochastic matrices. We prove that for any permutation $\sigma$ on $n$ letters without fixed elements there exists a reduced Gorenstein tiled order $\Lambda$ with $\sigma(\mathcal E)=\sigma$. We show that for any positive integer $k$ there exists a Gorenstein tiled order $\Lambda_{k}$ with $in\Lambda_{k}=k$. The adjacency matrix of any cyclic Gorenstein order $\Lambda$ is a linear combination of powers of a permutation matrix $P_{\sigma}$ with non-negative coefficients, where $\sigma= \sigma(\Lambda)$. If $A$ is a noetherian prime semiperfect semidistributive ring of a finite global dimension, then $Q(A)$ be a strongly connected simply laced quiver which has no loops.

Keywords: semiperfect ring, exponent matrix, tiled order, quiver, partially ordered set, index of semiperfect ring, Gorenstein tiled order, global dimension, transition matrix.

MSC: 16P40, 16G10

Received: 28.03.2003
Revised: 03.07.2003

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024