RUS  ENG
Full version
JOURNALS // Algebra and Discrete Mathematics // Archive

Algebra Discrete Math., 2013 Volume 15, Issue 2, Pages 201–212 (Mi adm421)

This article is cited in 2 papers

RESEARCH ARTICLE

Weighted zero-sum problems over $C_3^r$

H. Godinhoa, A. Lemosb, D. Marquesa

a Departamento de Matemática, Universidade de Brasília, Brasília-DF, Brazil
b Departamento de Matemática, Universidade Federal de Viçosa, Viçosa-MG, Brazil

Abstract: Let $C_n$ be the cyclic group of order $n$ and set $s_{A}(C_n^r)$ as the smallest integer $\ell$ such that every sequence $\mathcal{S}$ in $C_n^r$ of length at least $\ell$ has an $A$-zero-sum subsequence of length equal to $\exp(C_n^r)$, for $A=\{-1,1\}$. In this paper, among other things, we give estimates for $s_A(C_3^r)$, and prove that $s_A(C_{3}^{3})=9$, $s_A(C_{3}^{4})=21$ and $41\leq s_A(C_{3}^{5})\leq45$.

Keywords: Weighted zero-sum, abelian groups.

MSC: 20D60, 20K01

Received: 13.12.2011
Revised: 26.06.2012

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024