RUS  ENG
Full version
JOURNALS // Algebra and Discrete Mathematics // Archive

Algebra Discrete Math., 2014 Volume 18, Issue 1, Pages 8–13 (Mi adm477)

This article is cited in 1 paper

RESEARCH ARTICLE

A new characterization of alternating groups

Alireza Khalili Asboeiab, Syyed Sadegh Salehi Amiric, Ali Iranmaneshd

a Department of Mathematics, College of Engineering, Buin Zahra Branch, Islamic Azad University, Buin Zahra, Iran
b Department of Mathematics, Farhangian University, Shariati Mazandaran, Iran
c Department of Mathematics, Babol Branch, Islamic Azad University, Babol, Iran
d Department of Mathematics, Tarbiat Modares University P. O. Box: 14115-137, Tehran, Iran

Abstract: Let $G$ be a finite group and let $\pi_{e}(G)$ be the set of element orders of $G $. Let $k \in \pi_{e}(G)$ and let $m_{k}$ be the number of elements of order $k $ in $G$. Set $\mathrm{nse}(G):=\{ m_{k} | k \in \pi_{e}(G)\}$. In this paper, we show that if $n = r$, $r +1 $, $r + 2$, $r + 3$ $r+4$, or $r + 5$ where $r\geq5$ is the greatest prime not exceeding $n$, then $A_{n}$ characterizable by nse and order.

Keywords: finite group, simple group, alternating groups.

MSC: 20D06, 20D60

Received: 15.01.2014
Revised: 14.02.2014

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025