RUS  ENG
Full version
JOURNALS // Algebra and Discrete Mathematics // Archive

Algebra Discrete Math., 2010 Volume 10, Issue 2, Pages 64–86 (Mi adm49)

This article is cited in 8 papers

RESEARCH ARTICLE

Rees algebras, vertex covers and irreducible representations of Rees cones

L. A. Dupont, R. N. Villarreal

Departamento de Matem'aticas,Centro de Investigacon y de Estudios, Avanzados del IPN, Apartado Postal 14–740, 07000 Mexico City, D.F.

Abstract: Let $G$ be a simple graph and let $I_c(G)$ be its ideal of vertex covers. We give a graph theoretical description of the irreducible $b$-vertex covers of $G$, i. e., we describe the minimal generators of the symbolic Rees algebra of $I_c(G)$. Then we study the irreducible $b$-vertex covers of the blocker of $G$, i. e., we study the minimal generators of the symbolic Rees algebra of the edge ideal of $G$. We give a graph theoretical description of the irreducible binary $b$-vertex covers of the blocker of $G$. It is shown that they correspond to irreducible induced subgraphs of $G$. As a byproduct we obtain a method, using Hilbert bases, to obtain all irreducible induced subgraphs of $G$. In particular we obtain all odd holes and antiholes. We study irreducible graphs and give a method to construct irreducible $b$-vertex covers of the blocker of $G$ with high degree relative to the number of vertices of $G$.

Keywords: edge ideal, symbolic Rees algebras, perfect graph, irreducible vertex covers, irreducible graph, Alexander dual, blocker, clutter.

Received: 01.03.2009
Revised: 26.02.2011

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024