RUS  ENG
Full version
JOURNALS // Algebra and Discrete Mathematics // Archive

Algebra Discrete Math., 2014 Volume 18, Issue 2, Pages 186–202 (Mi adm491)

This article is cited in 2 papers

RESEARCH ARTICLE

Exponent matrices and Frobenius rings

M. A. Dokuchaeva, M. V. Kasyanukb, M. A. Khibinac, V. V. Kirichenkob

a Departamento de Matematica, Universidade de São Paulo
b National Taras Shevchenko University of Kyiv, The Faculty of Mechanics and Mathematics
c Institute for Technical Thermal Physics, National Academy of Sciences of Ukraine

Abstract: We give a survey of results connecting the exponent matrices with Frobenius rings. In particular, we prove that for any parmutation $\sigma \in S_{n}$ there exists a countable set of indecomposable Frobenius semidistributive rings $A_{m}$ with Nakayama permutation $ \sigma$.

Keywords: exponent matrix, Frobenius ring, distributive module, quiver of semiperfect ring.

MSC: 16P40, 16P20

Received: 04.12.2014
Revised: 04.12.2014

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024