RUS  ENG
Full version
JOURNALS // Algebra and Discrete Mathematics // Archive

Algebra Discrete Math., 2015 Volume 19, Issue 2, Pages 283–294 (Mi adm523)

This article is cited in 1 paper

RESEARCH ARTICLE

Symmetric modules over their endomorphism rings

B. Ungora, Y. Kurtulmazb, S. Halıcıoglua, A. Harmancic

a Department of Mathematics, Ankara University
b Department of Mathematics, Bilkent University
c Department of Maths, Hacettepe University

Abstract: Let $R$ be an arbitrary ring with identity and $M$ a right $R$-module with $S=\operatorname{End}_R(M)$. In this paper, we study right $R$-modules $M$ having the property for $f,g \in \operatorname{End}_R(M)$ and for $m\in M$, the condition $fgm = 0$ implies $gfm = 0$. We prove that some results of symmetric rings can be extended to symmetric modules for this general setting.

Keywords: symmetric modules, reduced modules, rigid modules, semicommutative modules, abelian modules, Rickart modules, principally projective modules.

MSC: 13C99, 16D80

Received: 05.01.2013
Revised: 05.12.2014

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024