RUS  ENG
Full version
JOURNALS // Algebra and Discrete Mathematics // Archive

Algebra Discrete Math., 2011 Volume 12, Issue 1, Pages 116–131 (Mi adm59)

This article is cited in 1 paper

RESEARCH ARTICLE

$H$-supplemented modules with respect to a preradical

Yahya Talebia, A. R. Moniri Hamzekolaeia, Derya Keskin Tütüncüb

a Department of Mathematics, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran
b Department of Mathematics, Hacettepe University, 06800 Beytepe, Ankara, Turkey

Abstract: Let $M$ be a right $R$-module and $\tau$ a preradical. We call $M$ $\tau$-$H$-supplemented if for every submodule $A$ of $M$ there exists a direct summand $D$ of $M$ such that $(A + D)/D \subseteq \tau(M/D)$ and $(A + D)/A \subseteq \tau(M/A)$. Let $\tau$ be a cohereditary preradical. Firstly, for a duo module $M = M_{1} \oplus M_{2}$ we prove that $M$ is $\tau$-$H$-supplemented if and only if $M_{1}$ and $M_{2}$ are $\tau$-$H$-supplemented. Secondly, let $M=\oplus_{i=1}^nM_i$ be a $\tau$-supplemented module. Assume that $M_i$ is $\tau$-$M_j$-projective for all $j > i$. If each $M_i$ is $\tau$-$H$-supplemented, then $M$ is $\tau$-$H$-supplemented. We also investigate the relations between $\tau$-$H$-supplemented modules and $\tau$-($\oplus$-)supplemented modules.

Keywords: $H$-supplemented module, $\tau$-$H$-supplemented module, $\tau$-lifting module.

MSC: 16S90, 16D10, 16D70, 16D99

Received: 14.11.2009
Revised: 01.10.2011

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024