RUS  ENG
Full version
JOURNALS // Algebra and Discrete Mathematics // Archive

Algebra Discrete Math., 2017 Volume 23, Issue 1, Pages 47–61 (Mi adm596)

This article is cited in 1 paper

RESEARCH ARTICLE

On the representation type of Jordan basic algebras

Iryna Kashubaa, Serge Ovsienkob, Ivan Shestakova

a Instituto de Matemática e Estatística, Universidade de São Paulo, R. do Matão 1010, São Paulo 05311-970, Brasil
b Faculty of Mechanics and Mathematics, Kiev Taras Shevchenko University, Volodymyrska St, 60, Kyiv, 01033 Ukraine

Abstract: A finite dimensional Jordan algebra $J$ over a field $\mathbf{k}$ is called basic if the quotient algebra $J/\operatorname{Rad} J$ is isomorphic to a direct sum of copies of $\mathbf{k}$. We describe all basic Jordan algebras $J$ with $(\operatorname{Rad} J)^2=0$ of finite and tame representation type over an algebraically closed field of characteristic 0.

Keywords: Jordan algebra, Jordan bimodule, representation type, quiver of an algebra.

MSC: 16G60, 17C55, 17C99

Received: 28.03.2017

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024