Abstract:
We study asymptotics of the spectral measure of a randomly chosen partial automorphism of a rooted tree. To every partial automorphism $x$ we assign its action matrix $A_x$. It is shown that the uniform distribution on eigenvalues of $A_x$ converges weakly in probability to $\delta_0$ as $n \to \infty$, where $\delta_0$ is the delta measure concentrated at $0$.
Keywords:partial automorphism, semigroup, eigenvalues, random matrix, delta measure.