RUS  ENG
Full version
JOURNALS // Algebra and Discrete Mathematics // Archive

Algebra Discrete Math., 2019 Volume 27, Issue 2, Pages 280–291 (Mi adm708)

This article is cited in 1 paper

RESEARCH ARTICLE

Commutator subgroups of the power subgroups of generalized Hecke groups

Özden Koruoğlu, Taner Meral, Recep Sahin

Balıkesir University, 10100 Balıkesir, Turkey

Abstract: Let $p$, $q\geq 2$ be relatively prime integers and let $H_{p,q}$ be the generalized Hecke group associated to $p$ and $q$. The generalized Hecke group $H_{p,q}$ is generated by $X(z)=-(z-\lambda _{p})^{-1}$ and $Y(z)=-(z+\lambda_{q})^{-1}$ where $\lambda _{p}=2\cos \frac{\pi }{p}$ and $\lambda_{q}=2\cos \frac{\pi }{q}$. In this paper, for positive integer $m$, we study the commutator subgroups $(H_{p,q}^{m})'$ of the power subgroups $H_{p,q}^{m}$ of generalized Hecke groups $H_{p,q}$. We give an application related with the derived series for all triangle groups of the form $(0;p,q,n)$, for distinct primes $p$, $q$ and for positive integer $n$.

Keywords: generalized Hecke groups, power subgroups, commutator subgroups.

MSC: 20H10, 11F06

Received: 02.01.2018
Revised: 27.08.2018

Language: English



© Steklov Math. Inst. of RAS, 2024