RUS  ENG
Full version
JOURNALS // Algebra and Discrete Mathematics // Archive

Algebra Discrete Math., 2020 Volume 29, Issue 2, Pages 161–172 (Mi adm749)

RESEARCH ARTICLE

Generalized $2$-absorbing and strongly generalized $2$-absorbing second submodules

H. Ansari-Toroghya, F. Farshadifarb, S. Maleki-Roudposhtia

a Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Guilan, P.O. Box 41335-19141, Rasht, Iran
b Department of Mathematics, Farhangian University, Tehran, Iran

Abstract: Let $R$ be a commutative ring with identity. A proper submodule $N$ of an $R$-module $M$ is said to be a $2$-absorbing submodule of $M$ if whenever $abm \in N$ for some $a, b \in R$ and $m \in M$, then $am \in N$ or $bm \in N$ or $ab \in (N :_R M)$. In [3], the authors introduced two dual notion of $2$-absorbing submodules (that is, $2$-absorbing and strongly $2$-absorbing second submodules) of $M$ and investigated some properties of these classes of modules. In this paper, we will introduce the concepts of generalized $2$-absorbing and strongly generalized $2$-absorbing second submodules of modules over a commutative ring and obtain some related results.

Keywords: second, generalized $2$-absorbing second.

MSC: 13C13, 13C99

Received: 06.12.2017

Language: English

DOI: 10.12958/adm585



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024