RUS  ENG
Full version
JOURNALS // Algebra and Discrete Mathematics // Archive

Algebra Discrete Math., 2020 Volume 30, Issue 2, Pages 172–178 (Mi adm773)

This article is cited in 3 papers

RESEARCH ARTICLE

Some results on the main supergraph of finite groups

A. K. Asboeia, S. S. Salehib

a Department of Mathematics, Farhangian University, Tehran, Iran
b Department of Mathematics, Babol Branch, Islamic Azad University, Babol, Iran

Abstract: Let $G$ be a finite group. The main supergraph $\mathcal{S}(G)$ is a graph with vertex set $G$ in which two vertices $x$ and $y$ are adjacent if and only if $o(x) \mid o(y)$ or $o(y)\mid o(x)$. In this paper, we will show that $G\cong \mathrm{PSL}(2,p)$ or $\mathrm{PGL}(2,p)$ if and only if $\mathcal{S}(G)\cong \mathcal{S}(\mathrm{PSL}(2,p))$ or $\mathcal{S}(\mathrm{PGL}(2,p))$, respectively. Also, we will show that if $M$ is a sporadic simple group, then $G\cong M$ if only if $\mathcal{S}(G)\cong \mathcal{S}(M)$.

Keywords: graph, main supergraph, finite groups, Thompson's problem.

MSC: Primary 20D08; Secondary 05C25

Received: 01.12.2017
Revised: 18.03.2018

Language: English

DOI: 10.12958/adm584



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025