RUS  ENG
Full version
JOURNALS // Algebra and Discrete Mathematics // Archive

Algebra Discrete Math., 2021 Volume 31, Issue 1, Pages 61–70 (Mi adm788)

RESEARCH ARTICLE

Mappings preserving sum of products $a\circ b+ba^{*}$ on factor von Neumann algebras

J. C. Ferreira, M. G. B. Marietto

Center for Mathematics, Computation and Cognition, Federal University of ABC, Avenida dos Estados, 5001, 09210-580, Santo André, Brazil

Abstract: Let $\mathcal{A}$ and $\mathcal{B}$ be two factor von Neumann algebras. In this paper, we proved that a bijective mapping $\Phi \colon\mathcal{A}\to\mathcal{B}$ satisfies $\Phi (a\circ b+ba^{*})=\Phi (a)\circ \Phi (b)+\Phi (b)\Phi (a)^{*}$ (where $\circ $ is the special Jordan product on $\mathcal{A}$ and $\mathcal{B},$ respectively), for all elements $a,b\in \mathcal{A}$, if and only if $\Phi $ is a $\ast $-ring isomorphism. In particular, if the von Neumann algebras $\mathcal{A}$ and $\mathcal{B}$ are type I factors, then $\Phi $ is a unitary isomorphism or a conjugate unitary isomorphism.

Keywords: $\ast$-ring isomorphisms, factor von Neumann algebras.

MSC: 47B48, 46L10

Received: 21.10.2019

Language: English

DOI: 10.12958/adm1482



© Steklov Math. Inst. of RAS, 2024