RUS  ENG
Full version
JOURNALS // Algebra and Discrete Mathematics // Archive

Algebra Discrete Math., 2021 Volume 31, Issue 1, Pages 84–108 (Mi adm790)

RESEARCH ARTICLE

On extension of classical Baer results to Poisson algebras

L. A. Kurdachenkoa, A. A. Pypkaa, I. Ya. Subbotinb

a Oles Honchar Dnipro National University, Gagarin ave., 72, Dnipro, 49010, Ukraine
b National University, 5245 Pacific Concourse Drive, Los Angeles, CA 90045-6904, USA

Abstract: In this paper we prove that if $P$ is a Poisson algebra and the $n$th hypercenter (center) of $P$ has a finite codimension, then $P$ includes a finite-dimensional ideal $K$ such that $P/K$ is nilpotent (abelian). As a corollary, we show that if the $n$th hypercenter of a Poisson algebra $P$ (over some specific field) has a finite codimension and $P$ does not contain zero divisors, then $P$ is an abelian algebra.

Keywords: Poisson algebra, Lie algebra, subalgebra, ideal, center, hypercenter, zero divisor, finite dimension, nilpotency.

MSC: 17B63, 17B65

Received: 15.01.2021

Language: English

DOI: 10.12958/adm1758



© Steklov Math. Inst. of RAS, 2024