RUS  ENG
Full version
JOURNALS // Algebra and Discrete Mathematics // Archive

Algebra Discrete Math., 2021 Volume 31, Issue 2, Pages 219–226 (Mi adm797)

RESEARCH ARTICLE

On (co)pure Baer injective modules

M. F. Hamid

Department of Production Engineering and Metallurgy, University of Technology, Baghdad, Iraq

Abstract: For a given class of $R$-modules $\mathcal{Q}$, a module $M$ is called $\mathcal{Q}$-copure Baer injective if any map from a $\mathcal{Q}$-copure left ideal of $R$ into $M$ can be extended to a map from $R$ into $M$. Depending on the class $\mathcal{Q}$, this concept is both a dualization and a generalization of pure Baer injectivity. We show that every module can be embedded as $\mathcal{Q}$-copure submodule of a $\mathcal{Q}$-copure Baer injective module. Certain types of rings are characterized using properties of $\mathcal{Q}$-copure Baer injective modules. For example a ring $R$ is $\mathcal{Q}$-coregular if and only if every $\mathcal{Q}$-copure Baer injective $R$-module is injective.

Keywords: $\mathcal{Q}$-copure submodule, $\mathcal{Q}$-copure Baer injective module, pure Baer injective module.

MSC: 16D50

Received: 30.06.2018

Language: English

DOI: 10.12958/adm1209



© Steklov Math. Inst. of RAS, 2024