Abstract:
The main results of this paper are limit theorems for horocycle flows on compact surfaces of constant negative curvature. One of the main objects of the paper is a special family of horocycle-invariant finitely additive Hölder measures on rectifiable arcs. An asymptotic formula for ergodic integrals for horocycle flows is obtained in terms of the finitely-additive measures, and limit theorems follow as a corollary of the asymptotic formula. The objects and results of this paper are similar to those in [15], [16], [4] and [5] for translation flows on flat surfaces. The arguments are based on the representation theory methods developed in [12] for the classification of invariant distributions, the solution of the cohomological equation and the asymptotics of ergodic averages of horocycle flows.