RUS  ENG
Full version
JOURNALS // Algebra i logika // Archive

Algebra Logika, 2004 Volume 43, Number 6, Pages 702–729 (Mi al106)

This article is cited in 4 papers

The Computable Dimension of $I$-Trees of Infinite Height

N. T. Kogabaeva, O. V. Kudinova, R. Millerb

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
b Cornell University

Abstract: We study computable trees with distinguished initial subtree (briefly, $I$-trees). It is proved that all $I$-trees of infinite height are computably categorical, and moreover, they all have effectively infinite computable dimension.

Keywords: computable tree with distinguished initial subtree, computable dimension, computably categorical model, branching model, effectively infinite computable dimension.

UDC: 510.53+512.562

Received: 19.02.2003
Revised: 04.06.2004


 English version:
Algebra and Logic, 2004, 43:6, 393–407

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025