RUS  ENG
Full version
JOURNALS // Algebra i logika // Archive

Algebra Logika, 2005 Volume 44, Number 2, Pages 238–251 (Mi al108)

This article is cited in 15 papers

Lattices of Dominions in Quasivarieties of Abelian Groups

S. A. Shakhova


Abstract: Let $\mathcal M$ be any quasivariety of Abelian groups, $\operatorname{dom}^{\mathcal M}_G(H)$ be the dominion of a subgroup $H$ of a group $G$ in $\mathcal M$, and $L_q(\mathcal M)$ be the lattice of subquasivarieties of $\mathcal M$. It is proved that $\operatorname{dom}^{\mathcal M}_G(H)$ coincides with a least normal subgroup of the group $G$ containing $H$, the factor group with respect to which is in $\mathcal M$. Conditions are specified subject to which the set $L(G,H,\mathcal M)=\{\operatorname{dom}^{\mathcal N}_G(H)\mid\mathcal N\in L_q(\mathcal M)\}$ forms a lattice under set-theoretic inclusion and the map $\varphi\colon L_q(\mathcal M)\rightarrow L(G,H,\mathcal M)$ such that $\varphi (\mathcal N)=\operatorname{dom}^{\mathcal N}_G(H)$ for any quasivariety $\mathcal N\in L_q(\mathcal M)$ is an antihomomorphism of the lattice $L_q(\mathcal M)$ onto the lattice $L(G,H,\mathcal M)$.

Keywords: quasivariety, dominion, lattice, group.

UDC: 512.54.01

Received: 20.04.2004


 English version:
Algebra and Logic, 2005, 44:2, 132–139

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024