RUS
ENG
Full version
JOURNALS
// Algebra i logika
// Archive
Algebra Logika,
2005
Volume 44,
Number 3,
Pages
261–268
(Mi al110)
This article is cited in
15
papers
Elementary Theories for Rogers Semilattices
S. A. Badaev
a
,
S. S. Goncharov
b
,
A. Sorbi
c
a
Al-Farabi Kazakh National University, Faculty of Mechanics and Mathematics
b
Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
c
Dipartimento di Scienze Matematiche ed Informatiche Roberto Magari, Università degli Studi di Sienna
Abstract:
It is proved that for every level of the arithmetic hierarchy, there exist infinitely many families of sets with pairwise non-elementarily equivalent Rogers semilattices.
Keywords:
arithmetic hierarchy, Rogers semilattice, elementary theory.
UDC:
510.55
Received: 25.02.2003
Revised: 12.07.2004
Fulltext:
PDF file (158 kB)
References
Cited by
English version:
Algebra and Logic, 2006,
44
:3,
143–147
Bibliographic databases:
©
Steklov Math. Inst. of RAS
, 2025