RUS  ENG
Full version
JOURNALS // Algebra i logika // Archive

Algebra i Logika. Sem., 1967 Volume 6, Number 2, Pages 111–114 (Mi al1100)

This article is cited in 4 papers

От divisible nilpotent groups

A. L. Šhmel'kin


Abstract: Let $\pi$ be some set of primes, and let $G$ be the $\pi$-divisible $\pi$-torsion-free locally nilpotent group. For a system of equations over $G$
\begin{eqnarray*} f_1(x_1,\dots, x_n; a_1,\dots,a_m)=1,\\ ..............................\\ f_n(x_1,\dots, x_n; a_1,\dots,a_m)=1, \end{eqnarray*}
let $\ell_{ij}$ be the sum of exponents of $x_j$ in the word $f_i$ (for all inclusions $x_j$ in $f_i$). If det $(\ell_{ij})$ is $\pi$-number, then this system has in $G$ the unique solution.

Received: 15.02.1967



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025