Abstract:
Let $\pi$ be some set of primes, and let $G$ be the $\pi$-divisible
$\pi$-torsion-free locally nilpotent group. For a system of equations
over $G$ \begin{eqnarray*}
f_1(x_1,\dots, x_n; a_1,\dots,a_m)=1,\\
..............................\\
f_n(x_1,\dots, x_n; a_1,\dots,a_m)=1,
\end{eqnarray*}
let $\ell_{ij}$ be the sum of exponents of $x_j$ in the word $f_i$ (for all
inclusions $x_j$ in $f_i$). If det $(\ell_{ij})$ is $\pi$-number, then this
system has in $G$ the unique solution.