This article is cited in
1 paper
Some more examples of undecidable theories
M. A. Taislin
Abstract:
1. Let
$L(\sigma)$ be a class of all relational systems of finite type
$\sigma$.
Suppose
$\sigma'$ be a type which includes the type
$\sigma$ and
$D_{\sigma'}\ne D_{\sigma}$.
Let
$\sigma'(\Lambda )=1$ whenever
$\Lambda \in D_{\sigma'}\setminus D_{\sigma}$.
Let
$K\subset L(\sigma)$ and $K(\sigma')=\{M\in L(\sigma')| M\upharpoonright \sigma\in K\}$.
It is for a number of classes
$K\subset L(\sigma)$ that the elementary theory of class
$K(\sigma')$
is hereditarily undecidable. This holds for example, if class
$K\subset L(\sigma)$ satisfies the conditions 1.-3.
2. When denoting
$A(n,\tau,\Lambda )$ resp.
$A^*(n,\tau,\Lambda )$ free algebras with
$n$ free generators
in the class of associative commutative
$\tau$-nilpotent algebras over field
$\Lambda $ resp. in the
class of associative
$\tau$-nilpotent algebras over field
$\Lambda $ and
putting $A(n,\Lambda )=\{A(n,\tau,\Lambda )| \tau=1,2,\dots\}$, $A^*(n,\Lambda )=\{A^*(n,\tau,\Lambda )| \tau=1,2,\dots\}$
it is proved that the elementary theories of the classes
$A(n,\Lambda )$,
$A^*(n,\Lambda )$ are hereditarily
undecidable for
$n\geqslant2$ if
$\Lambda $ is field of characteristic
$0$ and for
$n\geqslant 3$ in each other
cases. In all cases the elementary theory of class
$A^*(2,\Lambda )$ is hereditarily undecidable.
Received: 17.04.1967