RUS  ENG
Full version
JOURNALS // Algebra i logika // Archive

Algebra Logika, 2003 Volume 42, Number 1, Pages 37–50 (Mi al16)

This article is cited in 8 papers

Test Rank for Some Free Polynilpotent Groups

Ch. K. Guptaa, E. I. Timoshenko

a University of Manitoba

Abstract: We prove a theorem on possible test rank values for groups of the form $F/R'$. It is shown that test rank of a free polynilpotent group $F_r(\mathbb{A}\mathbb{N}_{c_1}\ldots\mathbb{N}_{c_l})$ is equal to $r-1$ or $r$, for any $r \geqslant 2$ and every collection $(c_1,\ldots,c_l)$ of classes. Moreover, $tr(F_r(\mathbb{A}\mathbb{N}_c))=r-1$ for $r\geqslant 2$ and $c\geqslant 2$.

Keywords: test rank, polynilpotent group, free group.

UDC: 512.5

Received: 25.02.2001


 English version:
Algebra and Logic, 2003, 42:1, 20–28

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025