RUS
ENG
Full version
JOURNALS
// Algebra i logika
// Archive
Algebra Logika,
2006
Volume 45,
Number 6,
Pages
637–654
(Mi al163)
This article is cited in
25
papers
Isomorphism types of Rogers semilattices for families from different levels of the arithmetical hierarchy
S. A. Badaev
a
,
S. S. Goncharov
b
,
A. Sorbi
c
a
Al-Farabi Kazakh National University, Faculty of Mechanics and Mathematics
b
Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
c
Dipartimento di Scienze Matematiche ed Informatiche Roberto Magari, Università degli Studi di Sienna
Abstract:
We investigate differences in isomorphism types for Rogers semilattices of computable numberings of families of sets lying in different levels of the arithmetical hierarchy.
Keywords:
arithmetical hierarchy, computable numbering, Rogers semilattice.
UDC:
510.55
Received: 30.10.2005
Fulltext:
PDF file (231 kB)
References
Cited by
English version:
Algebra and Logic, 2006,
45
:6,
361–370
Bibliographic databases:
©
Steklov Math. Inst. of RAS
, 2024