RUS  ENG
Full version
JOURNALS // Algebra i logika // Archive

Algebra Logika, 2006 Volume 45, Number 6, Pages 637–654 (Mi al163)

This article is cited in 25 papers

Isomorphism types of Rogers semilattices for families from different levels of the arithmetical hierarchy

S. A. Badaeva, S. S. Goncharovb, A. Sorbic

a Al-Farabi Kazakh National University, Faculty of Mechanics and Mathematics
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
c Dipartimento di Scienze Matematiche ed Informatiche Roberto Magari, Università degli Studi di Sienna

Abstract: We investigate differences in isomorphism types for Rogers semilattices of computable numberings of families of sets lying in different levels of the arithmetical hierarchy.

Keywords: arithmetical hierarchy, computable numbering, Rogers semilattice.

UDC: 510.55

Received: 30.10.2005


 English version:
Algebra and Logic, 2006, 45:6, 361–370

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024