RUS  ENG
Full version
JOURNALS // Algebra i logika // Archive

Algebra Logika, 2002 Volume 41, Number 1, Pages 57–69 (Mi al171)

This article is cited in 1 paper

$Z_n$-Orthograded Monocomposition Algebras

A. T. Gainov


Abstract: We study NQM algebras $A$ having an orthogonal automorphism $\varphi$ of finite order $n\geqslant3 $ (called $Z_n$-orthograded NQM algebras). The $Z_3$-orthograded NQM algebras of dimension 7 are treated in more detail. In particular, we find all algebras $A$ which are not bi-isotropic in this class, and for every algebra $A$, determine an automorphism group $\operatorname{Aut}A$ and an orthogonal automorphism group $\operatorname{Ortaut}A$. In constructing and classifying (up to isomorphism) NQM algebras, use is made of orthogonal decompositions of the algebras.

Keywords: $Z_n$-orthograded $\rm NQM$ algebra, orthogonal decomposition of algebras, automorphism group, orthogonal automorphism group.

UDC: 512.554

Received: 28.06.2000
Revised: 16.10.2000


 English version:
Algebra and Logic, 2002, 41:1, 30–38

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025