RUS  ENG
Full version
JOURNALS // Algebra i logika // Archive

Algebra Logika, 2001 Volume 40, Number 1, Pages 30–59 (Mi al208)

This article is cited in 2 papers

The Automorphic Conjugacy Problem for Subgroups of Fundamental Groups of Compact Surfaces

O. V. Bogopolskii

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences

Abstract: Let $\Sigma$ be a compact connected surface with basepoint $x$ and $H_1$ and $H_2$ be two finitely generated subgroups of $\pi_1(\Sigma, x)$ on finite sets of generators. It is proved that there exists an algorithm which decides whether there is an automorphism $\alpha\in\operatorname{Aut}(\pi_1(\Sigma, x))$ for which $\alpha (H_1)=H_2$, and if so, it finds such.

Keywords: fundamental groups of compact surfaces, automorphic conjugacy problem for subgroups.

UDC: 512.544.43+512.54.05

Received: 17.06.1999


 English version:
Algebra and Logic, 2001, 40:1, 17–33

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025