Abstract:
We study the class of cyclically presented groups which contain Fibonacci groups and Sieradski groups. Conditions are specified for these groups to be finite, pairwise isomorphic, or aspherical. As a partial answer to the question of Cavicchioli, Hegenbarth, and Repov, it is stated that there exists a wide subclass of groups with an odd number of generators cannot appear as fundamental groups of hyperbolic three-dimensional manifolds of finite volume.