RUS  ENG
Full version
JOURNALS // Algebra i logika // Archive

Algebra Logika, 2001 Volume 40, Number 5, Pages 545–560 (Mi al235)

This article is cited in 2 papers

Factorizations of One-Generated Composition Formations

W. Guoa, A. N. Skibab

a Xuzhou Normal University, Xuzhou, Republic of China
b Francisk Skorina Gomel State University

Abstract: A non-empty formation $\mathfrak F$ of finite groups is said to be solubly saturated, or we call it a composition formation, if every finite group $G$ having a normal subgroup $N$ such that $G/\Phi(N)\in\mathfrak F$ belongs to $\mathfrak F$. An intersection of all composition formations containing a given group $G$ is denoted $c\operatorname{form}G$. Conditions are described under which $\mathfrak F=c\operatorname{form}G$ has the form $\mathfrak F=\mathfrak{MH}$, where $\mathfrak M\ne\mathfrak F\ne\mathfrak H$.

Keywords: composition formation (= solubly saturated formation of finite groups), solubly normal subgroup.

UDC: 512.542

Received: 03.02.2000


 English version:
Algebra and Logic, 2001, 40:5, 306–314

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024