Abstract:
A subalgebra of a Lie algebra is said to be invariant if it is invariant under the action of some Cartan subalgebra of that algebra. A known theorem of Melville says that a nilpotent invariant subalgebra of a finite-dimensional semisimple complex Lie algebra has a small centroid. The notion of a Lie algebra with small centroid extends to a class of all finite-dimensional algebras. For finite-dimensional algebras of zero characteristic with semisimple derivations in a sufficiently broad class, their centroid is proved small. As a consequence, it turns out that every invariant subalgebra of a finite-dimensional reductive Lie algebra over an arbitrary definition field of zero characteristic has a small centroid.