RUS  ENG
Full version
JOURNALS // Algebra i logika // Archive

Algebra Logika, 2020 Volume 59, Number 3, Pages 323–333 (Mi al2617)

This article is cited in 8 papers

Structure of quasivariety lattices. III. Finitely partitionable bases

A. V. Kravchenkoabcd, A. M. Nurakunove, M. V. Schwidefskydbc

a Siberian Institute of Management — Branch of the Russian Presidental Academy of National Economics and Public Administration, Novosibirsk
b Novosibirsk State Technical University
c Novosibirsk State University
d Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
e Institute of Mathematics of the National Academy of Sciences of the Kyrgyz Republic

Abstract: We prove that each quasivariety containing a $\mathrm{B}$-class has continuum many subquasivarieties with finitely partitionable $\omega$-independent quasi-equational basis.

Keywords: independent basis, quasi-identity, quasivariety, finitely partitionable basis.

UDC: 512.57

Received: 30.05.2019
Revised: 21.10.2020

DOI: 10.33048/alglog.2020.59.303


 English version:
Algebra and Logic, 2020, 59:3, 222–229

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024