RUS  ENG
Full version
JOURNALS // Algebra i logika // Archive

Algebra Logika, 2020 Volume 59, Number 3, Pages 323–333 (Mi al2617)

This article is cited in 10 papers

Structure of quasivariety lattices. III. Finitely partitionable bases

A. V. Kravchenkoabcd, A. M. Nurakunove, M. V. Schwidefskydbc

a Siberian Institute of Management — Branch of the Russian Presidental Academy of National Economics and Public Administration, Novosibirsk
b Novosibirsk State Technical University
c Novosibirsk State University
d Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
e Institute of Mathematics of the National Academy of Sciences of the Kyrgyz Republic

Abstract: We prove that each quasivariety containing a $\mathrm{B}$-class has continuum many subquasivarieties with finitely partitionable $\omega$-independent quasi-equational basis.

Keywords: independent basis, quasi-identity, quasivariety, finitely partitionable basis.

UDC: 512.57

Received: 30.05.2019
Revised: 21.10.2020

DOI: 10.33048/alglog.2020.59.303


 English version:
Algebra and Logic, 2020, 59:3, 222–229

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025