RUS  ENG
Full version
JOURNALS // Algebra i logika // Archive

Algebra Logika, 2021 Volume 60, Number 2, Pages 166–175 (Mi al2656)

This article is cited in 5 papers

Simple right-symmetric $(1,1)$-superalgebras

A. P. Pozhidaeva, I. P. Shestakovba

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Dep. Mat., Univ. de São Paulo, São Paulo, BRASIL

Abstract: It is proved that $2$-torsion-free prime right-symmetric superrings having a nontrivial idempotent and satisfying a superidentity $(x,y,z)+(-1)^{z(x+y)}\cdot (z,x,y)+(-1)^{x(y+z)}(y,z,x)=0$ are associative. As a consequence, every simple finite-dimensional $(1,1)$-superalgebra with semisimple even part over an algebraically closed field of characteristic $0$ is associative.

Keywords: right-symmetric ring, left-symmetric algebra, pre-Lie algebra, prime ring, Peirce decomposition, $(1,1)$-superalgebra.

UDC: 512.554.5

Received: 03.06.2020
Revised: 24.08.2021

DOI: 10.33048/alglog.2021.60.204


 English version:
Algebra and Logic, 2021, 60:2, 108–114

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024