Abstract:
We study computable embeddings for pairs of structures, i.e., for classes containing precisely two nonisomorphic structures. Surprisingly, even for some pairs of simple linear orders, computable embeddings induce a nontrivial degree structure. Our main result shows that $\{\omega \cdot k,\omega^\star \cdot k\}$ is computably embeddable in $\{\omega \cdot t, \omega^\star \cdot t\}$ iff $k$ divides $t$.
Keywords:computable embedding, enumeration operator, computable linear order.