RUS  ENG
Full version
JOURNALS // Algebra i logika // Archive

Algebra Logika, 2021 Volume 60, Number 3, Pages 251–285 (Mi al2662)

This article is cited in 2 papers

Computable embeddings for pairs of linear orders

N. A. Bazhenova, H. Ganchevb, S. Vatevb

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Sofia University St. Kliment Ohridski

Abstract: We study computable embeddings for pairs of structures, i.e., for classes containing precisely two nonisomorphic structures. Surprisingly, even for some pairs of simple linear orders, computable embeddings induce a nontrivial degree structure. Our main result shows that $\{\omega \cdot k,\omega^\star \cdot k\}$ is computably embeddable in $\{\omega \cdot t, \omega^\star \cdot t\}$ iff $k$ divides $t$.

Keywords: computable embedding, enumeration operator, computable linear order.

UDC: 510.5

Received: 23.04.2020
Revised: 18.10.2021

DOI: 10.33048/alglog.2021.60.301


 English version:
Algebra and Logic, 2021, 60:3, 163–187

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024