RUS  ENG
Full version
JOURNALS // Algebra i logika // Archive

Algebra Logika, 2021 Volume 60, Number 4, Pages 400–424 (Mi al2674)

This article is cited in 9 papers

$T_1$-separable numberings of subdirectly indecomposable algebras

N. Kh. Kasymova, A. S. Morozovb, I. A. Khodzhamuratovaa

a National University of Uzbekistan named after M. Ulugbek, Tashkent
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk

Abstract: We prove the existence of a natural subclass of subdirectly indecomposable algebras all of whose Hausdorff numberings are negative. We also construct a $T_1$-separable nonnegative subdirectly indecomposable algebra with Artin congruence lattice.

Keywords: subdirect indecomposability, Artinianness, Noetherianness, computable and enumerable topologies, topological numbered algebras, translational precompleteness, positivity, negativity, effective separability.

UDC: 510.5

Received: 16.12.2020
Revised: 26.11.2021

DOI: 10.33048/alglog.2021.60.402


 English version:
Algebra and Logic, 2021, 60:4, 263–278

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025