RUS  ENG
Full version
JOURNALS // Algebra i logika // Archive

Algebra Logika, 2000 Volume 39, Number 2, Pages 198–205 (Mi al273)

This article is cited in 2 papers

Autostability of hyperarithmetic models

A. V. Romina

Novosibirsk State University

Abstract: Let $\mathscr M$ be a $\Delta^1_1$-constructivizable model. If its Scott rank $\mathrm{sr}({\mathscr M})$ is strictly less than $\omega_1^\mathrm{CK}$, then it can be proved that it is autostable. If $\mathrm{sr}({\mathscr M})=\omega_1^\mathrm{CK}$, then there exists an ordinal $\alpha<\omega_1^\mathrm{CK}$ such that for all $\gamma>\alpha$, $\mathscr M$ is not autostable in any degree $0^{(\gamma+1)}$. In addition, we consider problems of the $\Delta^1_1$-autostability of $\Delta_1^1$-constructivizable Boolean algebras.

UDC: 510.5

Received: 10.09.1999
Revised: 01.02.1999


 English version:
Algebra and Logic, 2000, 39:2, 114–118

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024