RUS  ENG
Full version
JOURNALS // Algebra i logika // Archive

Algebra Logika, 2024 Volume 63, Number 1, Pages 15–29 (Mi al2791)

Box-quasimetrics and horizontal joinability on Cartan groups

A. V. Greshnov, V. S. Kostyrkin

Novosibirsk State University

Abstract: On a Cartan group $\mathbb K$ equipped with a Carnot–Carathéodory metric $d_{cc}$, we find the exact value of a constant in the $(1,q_2)$-generalized triangle inequality for its Box-quasimetric. It is proved that any two points $x,y\in\Bbb K$ can be joined by a horizontal $k$-broken line $L^k_{x,y}$, $k\leq 6$; moreover, the length of such a broken line $L^k_{x,y}$ does not exceed the quantity $Cd_{cc}(x,y)$ for some constant $C$ not depending on the choice of $x,y\in\mathbb K$. The value $6$ here is nearly optimal.

Keywords: Cartan group, $(q_1,q_2)$-quasimetric space, Box-quasimetric, horizontal broken line, Rashevskii–Chow theorem.

UDC: 517:512.81

Received: 22.02.2024
Revised: 04.12.2024

DOI: 10.33048/alglog.2024.63.102


 English version:
Algebra and Logic, 2024, 63:1, 10–20


© Steklov Math. Inst. of RAS, 2025