RUS  ENG
Full version
JOURNALS // Algebra i logika // Archive

Algebra Logika, 2003 Volume 42, Number 2, Pages 237–254 (Mi al28)

This article is cited in 3 papers

Varieties Defined by Permutations

D. M. Smirnov


Abstract: We continue to study interrelations between permutative varieties and the cyclic varieties defined by cycles of the form $(1\,2\ldots k)$. A criterion is given determining whether a cyclic variety $G_k$ is interpretable in ${}_nG_\pi$. For a permutation $\pi$ without fixed elements, it is stated that a set of primes $p$ for which ${}_nG_\pi$ is interpretable in $G_p$ in the lattice $\mathbb L^{\rm int}$ is finite. It is also proved that for distinct primes $p_1,\ldots,p_r$, the Helly number of a type $[G_{p_1}]\wedge\ldots\wedge[G_{p_r}]$ in $\mathbb L^{\rm int}$ coincides with dimension of the dual type $[G_{p_1}]\vee\ldots\vee[G_{p_r}]$ and equals $r$.

Keywords: permutative variety, cyclic variety, interpretable variety, Helly number.

UDC: 512.572

Received: 17.02.2001


 English version:
Algebra and Logic, 2003, 42:2, 136–146

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024