RUS  ENG
Full version
JOURNALS // Algebra i logika // Archive

Algebra Logika, 2007 Volume 46, Number 3, Pages 360–368 (Mi al301)

This article is cited in 5 papers

Groups with an almost regular involution

A. I. Sozutov

Krasnoyarsk State Academy of Architecture and Construction

Abstract: An involution j of a group $G$ is said to be almost perfect in $G$ if any two involutions in $j^G$ whose product has infinite order are conjugated by a suitable involution in $j^G$. Let $G$ contain an almost perfect involution $j$ and $|C_G(j)|<\infty$. Then the following statements hold:
1) $[j,G]$ is contained in an $FC$-radical of $G$, and $|G:[j,G]|\leqslant|C_G(j)|$;
2) the commutant of an $FC$-radical of $G$ is finite;
3) $FC(G)$ contains a normal nilpotent class 2 subgroup of finite index in $G$.

Keywords: group, almost regular involution, almost perfect involution.

UDC: 512.54

Received: 25.04.2006


 English version:
Algebra and Logic, 2007, 46:3, 195–199

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025