Abstract:
We deal with Sylvan's logic $CC_\omega$. It is proved that this logic is a conservative extension of positive intuitionistic logic. Moreover, a paraconsistent extension of Sylvan's logic is constructed, which is also a conservative extension of positive intuitionistic logic and has the property of being decidable. The constructed logic, in which negation is defined via a total accessibility relation, is a natural intuitionistic analog of the modal system S5. For this logic, an axiomatization is given and the completeness theorem is proved.