RUS  ENG
Full version
JOURNALS // Algebra i logika // Archive

Algebra Logika, 2003 Volume 42, Number 3, Pages 338–365 (Mi al34)

This article is cited in 8 papers

Superlocals in Symmetric and Alternating Groups

D. O. Revin

The Specialized Educational Scientific Center of Novosibirsk State University

Abstract: On Aschbacher's definition, a subgroup $N$ of a finite group $G$ is called a $p$-superlocal for a prime $p$ if $N=N_G(O_p(N))$. We describe the $p$-superlocals in symmetric and alternating groups, thereby resolving part way Problem 11.3 in the Kourovka Notebook [3].

Keywords: symmetric group, alternating group, $p$-superlocal.

UDC: 512.542

Received: 30.08.2001


 English version:
Algebra and Logic, 2003, 42:3, 192–206

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025