RUS  ENG
Full version
JOURNALS // Algebra i logika // Archive

Algebra Logika, 2009 Volume 48, Number 2, Pages 157–173 (Mi al394)

This article is cited in 6 papers

The twisted conjugacy problem for endomorphisms of metabelian groups

E. Venturaa, V. A. Roman'kovb

a Univ. Politècnica de Catalunya, Manresa, Barselona, Spain
b Dostoevskii Omsk State University, Omsk, Russia

Abstract: Let $M$ be a finitely generated metabelian group explicitly presented in a variety $\mathcal A^2$ of all metabelian groups. An algorithm is constructed which, for every endomorphism $\varphi\in\operatorname{End}(M)$ identical modulo an Abelian normal subgroup $N$ containing the derived subgroup $M'$ and for any pair of elements $u,v\in M$, decides if an equation of the form $(x\varphi)u=vx$ has a solution in $M$. Thus, it is shown that the title problem under the assumptions made is algorithmically decidable. Moreover, the twisted conjugacy problem in any polycyclic metabelian group $M$ is decidable for an arbitrary endomorphism $\varphi\in\operatorname{End}(M)$.

Keywords: metabelian group, twisted conjugacy, endomorphism, fixed points, Fox derivatives.

UDC: 512.54

Received: 25.12.2008


 English version:
Algebra and Logic, 2009, 48:2, 89–98

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024