RUS  ENG
Full version
JOURNALS // Algebra i logika // Archive

Algebra Logika, 2009 Volume 48, Number 4, Pages 425–442 (Mi al407)

This article is cited in 3 papers

Coinvariants for a coadjoint action of quantum matrices

V. V. Antonova, A. N. Zubkovb

a Omsk, RUSSIA
b Chair of Geometry, Omsk State Pedagogical University, Omsk, RUSSIA

Abstract: Let $K$ be a (algebraically closed) field. A morphism $A\mapsto g^{-1}Ag$, where $A\in M(n)$ and $g\in GL(n)$, defines an action of a general linear group $GL(n)$ on an $n\times n$-matrix space $M(n)$, referred to as an adjoint action. In correspondence with the adjoint action is the coaction $\alpha\colon K[M(n)]\to K[M(n)]\otimes K[GL(n)]$ of a Hopf algebra $K[GL(n)]$ on a coordinate algebra $K[M(n)]$ of an $n\times n$-matrix space, dual to the conjugation morphism. Such is called an adjoint coaction.
We give coinvariants of an adjoint coaction for the case where $K$ is a field of arbitrary characteristic and one of the following conditions is satisfied: (1) $q$ is not a root of unity; (2) $\operatorname{char}K=0$ and $q=\pm1$; (3) $q$ is a primitive root of unity of odd degree. Also it is shown that under the conditions specified, the category of rational $GL_q\times GL_q$-modules is a highest weight category.

Keywords: field, adjoint action, adjoint coaction, rational module.

UDC: 512.55

Received: 28.12.2008
Revised: 03.03.2009


 English version:
Algebra and Logic, 2009, 48:4, 239–249

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024