RUS  ENG
Full version
JOURNALS // Algebra i logika // Archive

Algebra Logika, 2012 Volume 51, Number 1, Pages 96–128 (Mi al524)

This article is cited in 12 papers

Some presentations of the real number field

A. S. Morozovab

a Novosibirsk State University, Novosibirsk, Russia
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia

Abstract: It is proved that every two $\Sigma$-presentations of an ordered field $\mathbb R$ of reals over $\mathbb{HF(R)}$, whose universes are subsets of $\mathbb R$, are mutually $\Sigma$-isomorphic. As a consequence, for a series of functions $f\colon\mathbb R\to\mathbb R$ (e.g., $\exp$, $\sin$, $\cos$, $\ln$), it is stated that the structure $\mathbb R=\langle R,+,\times,<,0,1,f\rangle$ lacks such $\Sigma$-presentations over $\mathbb{HF(R)}$.

Keywords: $\Sigma$-presentation, ordered field of reals.

UDC: 510.6+510.5

Received: 26.03.2011
Revised: 08.11.2011


 English version:
Algebra and Logic, 2012, 51:1, 66–88

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025