RUS  ENG
Full version
JOURNALS // Algebra i logika // Archive

Algebra Logika, 2012 Volume 51, Number 3, Pages 321–330 (Mi al537)

This article is cited in 2 papers

Groups with given properties of finite subgroups

D. V. Lytkinaab, V. D. Mazurovca

a Novosibirsk State University, Novosibirsk, Russia
b Siberian State University of Telecommunications and Information Sciences, Novosibirsk, Russia
c Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia

Abstract: Suppose that in every finite even order subgroup $F$ of a periodic group $G$, the equality $[u,x]^2=1$ holds for any involution $u$ of $F$ and for an arbitrary element $x$ of $F$. Then the subgroup $I$ generated by all involutions in $G$ is locally finite and is a $2$-group. In addition, the normal closure of every subgroup of order $2$ in $G$ is commutative.

Keywords: periodic group, finite group, locally finite group, involution.

UDC: 512.542

Received: 13.02.2012


 English version:
Algebra and Logic, 2012, 51:3, 213–219

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025