RUS
ENG
Full version
JOURNALS
// Algebra i logika
// Archive
Algebra Logika,
2013
Volume 52,
Number 1,
Pages
84–91
(Mi al573)
Integral closure of a valuation ring in a finite extension
Yu. L. Ershov
ab
a
Novosibirsk State University, Novosibirsk, Russia
b
Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
Abstract:
The main result of the paper is
THEOREM
1.
If a minimal polynomial
$f$
for
$\theta$
over
$F$
is
$v$
-separable, then there exists a nonzero element
$\pi\in R$
such that
$\pi S\le R[\theta]$
.
Keywords:
valued field, minimal polynomial,
$v$
-separable polynomial.
UDC:
512.52
Received: 01.03.2013
Fulltext:
PDF file (148 kB)
References
English version:
Algebra and Logic, 2013,
52
:1,
61–66
Bibliographic databases:
©
Steklov Math. Inst. of RAS
, 2025