RUS  ENG
Full version
JOURNALS // Algebra i logika // Archive

Algebra Logika, 2013 Volume 52, Number 1, Pages 84–91 (Mi al573)

Integral closure of a valuation ring in a finite extension

Yu. L. Ershovab

a Novosibirsk State University, Novosibirsk, Russia
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia

Abstract: The main result of the paper is
THEOREM 1. If a minimal polynomial $f$ for $\theta$ over $F$ is $v$-separable, then there exists a nonzero element $\pi\in R$ such that $\pi S\le R[\theta]$.

Keywords: valued field, minimal polynomial, $v$-separable polynomial.

UDC: 512.52

Received: 01.03.2013


 English version:
Algebra and Logic, 2013, 52:1, 61–66

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025