RUS  ENG
Full version
JOURNALS // Algebra i logika // Archive

Algebra Logika, 2013 Volume 52, Number 2, Pages 131–144 (Mi al578)

This article is cited in 1 paper

Computable categoricity of the Boolean algebra $\mathfrak B(\omega)$ with a distinguished automorphism

N. A. Bazhenova, R. R. Tukhbatullinab

a Novosibirsk State University, Novosibirsk, Russia
b CERGE–EI, a joint workplace of Charles Univ. and Economics Inst. Acad. Sci. Czech Repub., Politických vězňů, 7, 11121 Prague, Czech Republic

Abstract: It is proved that every computably enumerable Turing degree is a degree of categoricity of some computable Boolean algebra with a distinguished automorphism. We construct an example of a computably categorical Boolean algebra with a distinguished automorphism, having a set of atoms in a given computably enumerable Turing degree.

Keywords: Boolean algebra with distinguished automorphism, computable categoricity, categoricity spectrum, degree of categoricity.

UDC: 512.563+510.5+510.6

Received: 24.07.2012


 English version:
Algebra and Logic, 2013, 52:2, 89–97

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024